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This textbook introduces a set of fundamental equations that govern the conservation of

mass (dry air, water vapor, trace gas), momentum and energy in the lower atmosphere.

Simplifications of each of these equations are made in the context of boundary-layer

processes. Extended from these equations the author then discusses a key set of issues,

including (1) turbulence generation and destruction, (2) force balances in various

portions of the lower atmosphere, (3) canopy flow, (4) tracer diffusion and footprint

theory, (5) principles of flux measurement and interpretation, (6) models for land s
evaporation, (7) models for surface temperature response to land use change, and Xu h u I Lee
(8) boundary layer budget calculations for heat, water vapor and carbon dioxide.

Problem sets are supplied at the end of each chapter to reinforce the concepts and

theory presented in the main text. This volume offers the accumulation of insights

gained by the author during his academic career as a researcher and teacher in the field
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Effects of land use change on the climate system

Biogeochemical effect: arising from changes in atmospheric CO,
concentration

causing changes in radiative forcing of the atmosphere

consequences at global scale; no direct local impact
Biophysical effect: associated with changes in albedo, surface roughness
and evaporation

causing changes in energy balance and energy redistribution

impact at both global and local scale

effect on surface temperature depends on regional background climate



Longwave radiation feedback arising from land use change
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Radiation-only solution:
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Local climate sensitivity:
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Prediction:
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Radiative feedback versus energy redistributions
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The intrinsic biophysical mechanism

One source model of sensible heat flux

Reference
height

Surface energy balance

(1—a)K + L, —oT*=H+\E+G



The intrinsic biophysical mechanism

A
Surface temperature 1, =1, + ; Jff(R:‘ — G)

Surface temperature difference between two adjacent land types

Ao Ao Ao
~ (A 1 (A 2
AT, = 55 (AS) + o B (A ) + g Ba(Af)

1 2 3

1: local radiative forcing
2. energy redistribution due to roughness change

3: energy redistribution due to Bowen ratio change



Forest versus shrub land, Kubuqi Desert, Inner Mongolia
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Comparison of modeled and observed surface temperature
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Comparison of surface temperature difference between shrub
land and forest, Inner Mongolia

Daytime

Calculated ATg

Calculated ATg

6

(a)

Winter

0 2
Observed ATg

Observed ATg

Source: Wang, Lee, Lin et al. (2017), manuscript in review

Calculated ATg

Calculated ATg

y =1.02x - 0.21
RZ = 0.94

0 2 4
Observed ATg

Autumn

0 2 4
Observed ATg




Comparison of surface temperature difference between shrub
land and forest, Inner Mongolia
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Attribution of land use effect
(shrub versus forest)
g Inner Mongolia
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Source: Wang, Lee, Lin et al. (2017), manuscript in review

1 (a)

Winter

| ©

n

u l._!L

Summer

all

—

= Observed ATs

mmmm Calculated ATs
=== Radiative forcing
—— Roughness changes
mmmm Bowen ratio changes
mmmm Soil heat flux

B

|




Blending height in a model grid
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Blending height in a model grid
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Vegetation patternin a model grid
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Deforestation effect using savanna-type land model
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Deforestation effect using mosaic-type land model
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Deforestation effect on surface air temperature
(open land minus forest land)
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Deforestation effect on surface air temperature

(open land minus forest land)
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Source: Zhang, Lee, Yu, et al. (2014) Environ Res Letters 9: 034002



White roof, green roof, solar

White roof in California
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Albedo Change Detection
Chicago

Chicago Reflectivity Change
1995 - 2009
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Homework exercise

According to this satellite study, use of reflective roofs increased the citywide albedo
by about 0.02 from 1995 to 2010. Estimate the surface temperature reduction
caused by the albedo change.

Ao
AT, ~ AS
1+f( )




Source: Zhao, Lee, Schultz (2017) Atmospheric Chemistry and Physics 17: 9067-9080

Urban surface temperature change in

reflective roofs

response to use of
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UHI mitigation wedges for cities in United States
(summer midday conditions)
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Nighttime urban heat island in Chinese cities

UHI enhanced by haze

4o
AT, = 1+f(AL¢)

Source: Cao C, X Lee, S Liu, et al (2016) Nature Communications doi: 10.1038/ncomms12509



Changes in surface radiation due to atmospheric aerosols
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Effect of aerosols on surface temperature
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The intrinsic biophysical mechanism

Ao
1+ f

Surface temperature 1, =71, + (R — G)

Surface temperature difference between two adjacent land types

D o oo
AT, ~ 1+f(AS) + (1+f)2Rn(Afl) + 1 +f)2Rn(Af2)
1 2 3

1: local radiative forcing
2. energy redistribution due to roughness change
3: energy redistribution due to Bowen ratio change



